Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 344
1.
J Chem Phys ; 159(2)2023 Jul 14.
Article En | MEDLINE | ID: mdl-37431915

Seminal gas discharge experiments of the late 19th and early 20th centuries laid the foundations of modern physics, and the influence of this "golden era" continues to resonate well into the 21st century through modern technologies, medical applications, and fundamental scientific investigations. Key to this continuing success story has been the kinetic equation formulated by Ludwig Boltzmann in 1872, which provides the theoretical foundations necessary for analyzing such highly non-equilibrium situations. However, as discussed here, the full potential of Boltzmann's equation has been realized only in the past 50 years or so, with modern computing power and analytical techniques facilitating accurate solutions for various types of charged particles (ions, electrons, positrons, and muons) in gases. Our example of thermalization of electrons in xenon gas highlights the need for such accurate methods-the traditional Lorentz approximation is shown to be hopelessly inadequate. We then discuss the emerging role of Boltzmann's equation in determining cross sections by inverting measured swarm experiment transport coefficient data using machine learning with artificial neural networks.

2.
J Chem Phys ; 159(3)2023 Jul 21.
Article En | MEDLINE | ID: mdl-37458342

Phosphorescent organic light emitting diodes (OLEDs) suffer from efficiency roll off, where device efficiency rapidly decays at higher luminance. One strategy to minimize this loss of efficiency at higher luminance is the use of non-uniform or graded guest:host blend ratios within the emissive layer. This work applies a multi-scale modeling framework to elucidate the mechanisms by which a non-uniform blend ratio can change the performance of an OLED. Mobility and exciton data are extracted from a kinetic Monte-Carlo model, which is then coupled to a drift diffusion model for fast sampling of the parameter space. The model is applied to OLEDs with uniform, linear, and stepwise graduations in the blend ratio in the emissive layer. The distribution of the guests in the film was found to affect the mobility of the charge carriers, and it was determined that having a graduated guest profile broadened the recombination zone, leading to a reduction in second order annihilation rates. That is, there was a reduction in triplet-triplet and triplet-polaron annihilation. Reducing triplet-triplet and triplet-polaron annihilation would lead to an improvement in device efficiency.

3.
J Chem Phys ; 155(8): 084305, 2021 Aug 28.
Article En | MEDLINE | ID: mdl-34470353

We review experimental and theoretical cross sections for electron scattering in nitric oxide (NO) and form a comprehensive set of plausible cross sections. To assess the accuracy and self-consistency of our set, we also review electron swarm transport coefficients in pure NO and admixtures of NO in Ar, for which we perform a multi-term Boltzmann equation analysis. We address observed discrepancies with these experimental measurements by training an artificial neural network to solve the inverse problem of unfolding the underlying electron-NO cross sections while using our initial cross section set as a base for this refinement. In this way, we refine a suitable quasielastic momentum transfer cross section, a dissociative electron attachment cross section, and a neutral dissociation cross section. We confirm that the resulting refined cross section set has an improved agreement with the experimental swarm data over that achieved with our initial set. We also use our refined database to calculate electron transport coefficients in NO, across a large range of density-reduced electric fields from 0.003 to 10 000 Td.

4.
AJNR Am J Neuroradiol ; 42(7): 1184-1189, 2021 07.
Article En | MEDLINE | ID: mdl-33737269

In the first part of this 2-part series, we described how to implement microscopy coil MR imaging of the orbits. Beyond being a useful anatomic educational tool, microscopy coil MR imaging has valuable applications in clinical practice. By depicting deep tissue tumor extension, which cannot be evaluated clinically, ophthalmic surgeons can minimize the surgical field, preserve normal anatomy when possible, and maximize the accuracy of resection margins. Here we demonstrate common and uncommon pathologies that may be encountered in orbital microscopy coil MR imaging practice and discuss the imaging appearance, the underlying pathologic processes, and the clinical relevance of the microscopy coil MR imaging findings.


Magnetic Resonance Imaging , Orbit , Orbital Diseases/diagnostic imaging , Humans , Magnetic Resonance Imaging/instrumentation , Microscopy/instrumentation , Orbit/anatomy & histology , Orbit/diagnostic imaging , Orbit/pathology , Orbital Diseases/pathology
5.
J Chem Phys ; 154(8): 084306, 2021 Feb 28.
Article En | MEDLINE | ID: mdl-33639749

We review experimental and theoretical cross sections for electron transport in α-tetrahydrofurfuryl alcohol (THFA) and, in doing so, propose a plausible complete set. To assess the accuracy and self-consistency of our proposed set, we use the pulsed-Townsend technique to measure drift velocities, longitudinal diffusion coefficients, and effective Townsend first ionization coefficients for electron swarms in admixtures of THFA in argon, across a range of density-reduced electric fields from 1 to 450 Td. These measurements are then compared to simulated values derived from our proposed set using a multi-term solution of Boltzmann's equation. We observe discrepancies between the simulation and experiment, which we attempt to address by employing a neural network model that is trained to solve the inverse swarm problem of unfolding the cross sections underpinning our experimental swarm measurements. What results from our neural network-based analysis is a refined set of electron-THFA cross sections, which we confirm is of higher consistency with our swarm measurements than that which we initially proposed. We also use our database to calculate electron transport coefficients in pure THFA across a range of reduced electric fields from 0.001 to 10 000 Td.

6.
J Acoust Soc Am ; 149(1): 340, 2021 01.
Article En | MEDLINE | ID: mdl-33514152

This work proposes the use of two physics-based models for wave attenuation to infer the microstructure of cortical bone-like structures. One model for ultrasound attenuation in porous media is based on the independent scattering approximation (ISA) and the other model is based on the Waterman Truell (WT) approximation. The microstructural parameters of interest are pore radius and pore density. Attenuation data are simulated for three-dimensional structures mimicking cortical bone using the finite-difference time domain package SimSonic. These simulated structures have fixed sized pores (monodisperse), allowing fine-tuned control of the microstructural parameters. Structures with pore radii ranging from 50 to 100 µm and densities ranging from 20 to 50 pores/mm3 are generated in which only the attenuation due to scattering is considered. From here, an inverse problem is formulated and solved, calibrating the models to the simulated data and producing estimates of pore radius and density. The estimated microstructural parameters closely match the values used to simulate the data, validating the use of both the ISA and WT approximations to model ultrasonic wave attenuation in heterogeneous structures mimicking cortical bone. Furthermore, this illustrates the effectiveness of both models in inferring pore radius and density solely from ultrasonic attenuation data.


Cortical Bone , Ultrasonics , Bone Density , Bone and Bones , Cortical Bone/diagnostic imaging , Porosity , Ultrasonography
7.
Vascular ; 29(5): 657-660, 2021 Oct.
Article En | MEDLINE | ID: mdl-33270524

OBJECTIVES: Takayasu's arteritis is a large vessel vasculitis which usually involves the aorta and its first generation branches. Aortic dissection, however, is a rare manifestation of Takayasu's arteritis and for this reason optimum management in both short and long term is unknown. METHODS: This is a case of a 31-year-old female presenting with acute type B AD in association with underlying TA which failed to respond to conservative management and underwent thoracic stent grafting (TEVAR). RESULTS: Despite successful coverage of the intimal breach in the thoracic aorta by TEVAR there were complications with delivery of the stent which required a conduit sutured to the right common iliac artery. Also post-TEVAR computed tomography showed a localised dissection of the origin of the left common carotid artery which may have been iatrogenic possibly due to the stiff guidewire used during delivery of the stent graft to the thoracic aorta. CONCLUSIONS: The use of TEVAR for an acute type B AD in those with TA may be problematic. The fragility of the major arteries increases the likelihood of iatrogenic periprocedural complications and long-term surveillance is essential due to significant chance of further arterial complications in type B AD occurring in TA.


Aortic Aneurysm, Thoracic/surgery , Aortic Dissection/surgery , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Endovascular Procedures/instrumentation , Stents , Takayasu Arteritis/complications , Acute Disease , Adult , Aortic Dissection/diagnostic imaging , Aortic Dissection/etiology , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/etiology , Female , Humans , Takayasu Arteritis/diagnostic imaging , Treatment Outcome
8.
J Chem Phys ; 153(24): 244303, 2020 Dec 28.
Article En | MEDLINE | ID: mdl-33380099

This paper presents a joint experimental and theoretical study of positron scattering from furan. Experimental data were measured using the low energy positron beamline located at the Australian National University and cover an energy range from 1 eV to 30 eV. Cross sections were measured for total scattering, total elastic and inelastic scattering, positronium formation, and differential elastic scattering. Two theoretical approaches are presented: the Schwinger multichannel method and the independent atom method with screening corrected additivity rule. In addition, our data are compared to corresponding electron scattering results from the same target with a number of significant differences observed and discussed.

9.
Phys Chem Chem Phys ; 22(24): 13505-13515, 2020 Jun 24.
Article En | MEDLINE | ID: mdl-32530024

Absolute total electron scattering cross sections (TCS) for nitrobenzene molecules with impact energies from 0.4 to 1000 eV have been measured by means of two different electron-transmission experimental arrangements. For the lower energies (0.4-250 eV) a magnetically confined electron beam system has been used, while for energies above 100 eV a linear beam transmission technique with high angular resolution allowed accurate measurements up to 1000 eV impact energy. In both cases random uncertainties were maintained below 5-8%. Systematic errors arising from the angular and energy resolution limits of each apparatus are analysed in detail and quantified with the help of our theoretical calculations. Differential elastic and integral elastic, excitation and ionisation as well as momentum transfer cross sections have been calculated, for the whole energy range considered here, by using an independent atom model in combination with the screening corrected additivity rule method including interference effects (IAM-SCARI). Due to the significant permanent dipole moment of nitrobenzene, additional differential and integral rotational excitation cross sections have been calculated in the framework of the Born approximation. If we ignore the rotational excitations, our calculated total cross section agrees well with our experimental results for impact energies above 15 eV. Additionally, they overlap at 10 eV with the low energy Schwinger Multichannel method with Pseudo Potentials (SMCPP) calculation available in the literature (L. S. Maioli and M. H. F. Bettega, J. Chem. Phys., 2017, 147, 164305). We find a broad feature in the experimental TCS at around 1.0 eV, which has been related to the formation of the NO2- anion and assigned to the π*(b1) resonance, according to previous mass spectra available in the literature. Other local maxima in the TCSs are found at 4.0 ± 0.2 and 5.0 ± 0.2 eV and are assigned to core excited resonances leading to the formation of the NO2- and O2- anions, respectively. Finally, for energies below 10 eV, differences found between the present measurements, the SMCPP calculation and our previous data for non-polar benzene have revealed the importance of accurately calculating the rotational excitation contribution to the TCS before comparing theoretical and experimental data. This comparison suggests that our dipole-Born calculation for nitrobenzene overestimates the magnitude of the rotational excitation cross sections below 10 eV.

10.
AJNR Am J Neuroradiol ; 41(6): 947-950, 2020 06.
Article En | MEDLINE | ID: mdl-32241775

Microscopy coil MR imaging of the orbits has been described previously as a technique for anatomic depiction. In the first part of this 2-part series, the improvement in spatial resolution that the technique offers compared with conventional MR imaging of the orbits is demonstrated. We provide a guide to implementing the technique, sharing pearls and pitfalls gleaned from our own practice to make implementation of microscopy coil MR imaging at your own center easy. As a quick reference guide to the small-scale structures encountered when reading the studies, a short anatomy section is included, which doubles as a showcase for the high-quality imaging that can be obtained. In the second part, our experience of microscopy coil MR imaging in day-to-day clinical practice takes it far beyond being a useful anatomic educational tool. Through a series of interesting cases, we highlight the added benefit of microscopy coil MR imaging compared with standard orbital MR imaging.


Magnetic Resonance Imaging/methods , Orbit/anatomy & histology , Humans
11.
Phys Rev E ; 101(2-1): 023203, 2020 Feb.
Article En | MEDLINE | ID: mdl-32168642

Third-order transport coefficient tensor of charged-particle swarms in neutral gases in the presence of spatially uniform electric and magnetic fields is considered using a multiterm solution of Boltzmann's equation and Monte Carlo simulation technique. The structure of the third-order transport coefficient tensor and symmetries along its individual components in varying configurations of electric and magnetic fields are addressed using a group projector technique and through symmetry considerations of the Boltzmann equation. In addition, we focus upon the physical interpretation of the third-order transport coefficient tensor by considering the extended diffusion equation which incorporates the contribution of the third-order transport coefficients to the density profile of charged particles. Numerical calculations are carried out for electron and ion swarms for a range of model gases with the aim of establishing accurate benchmarks for third-order transport coefficients. The effects of ion to neutral-particle mass ratio are also examined. The errors of the two-term approximation for solving the Boltzmann equation and limitations of previous treatments of the high-order charged-particle transport properties are also highlighted.

12.
Clin Radiol ; 75(3): 237.e1-237.e9, 2020 03.
Article En | MEDLINE | ID: mdl-31787211

AIM: To investigate the feasibility of applying a deep convolutional neural network (CNN) for detection/localisation of acute proximal femoral fractures (APFFs) on hip radiographs. MATERIALS AND METHODS: This study had institutional review board approval. Radiographs of 307 patients with APFFs and 310 normal patients were identified. A split ratio of 3/1/1 was used to create training, validation, and test datasets. To test the validity of the proposed model, a 20-fold cross-validation was performed. The anonymised images from the test cohort were shown to two groups of radiologists: musculoskeletal radiologists and diagnostic radiology residents. Each reader was asked to assess if there was a fracture and localise it if one was detected. The area under the receiver operator characteristics curve (AUC), sensitivity, and specificity were calculated for the CNN and readers. RESULTS: The mean AUC was 0.9944 with a standard deviation of 0.0036. Mean sensitivity and specificity for fracture detection was 97.1% (81.5/84) and 96.7% (118/122), respectively. There was good concordance with saliency maps for lesion identification, but sensitivity was lower for characterising location (subcapital/transcervical, 84.1%; basicervical/intertrochanteric, 77%; subtrochanteric, 20%). Musculoskeletal radiologists showed a sensitivity and specificity for fracture detection of 100% and 100% respectively, while residents showed 100% and 96.8%, respectively. For fracture localisation, the performance decreased slightly for human readers. CONCLUSION: The proposed CNN algorithm showed high accuracy for detection of APFFs, but the performance was lower for fracture localisation. Overall performance of the CNN was lower than that of radiologists, especially in localizing fracture location.


Artificial Intelligence , Hip Fractures/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Feasibility Studies , Female , Humans , Male , Middle Aged , Proof of Concept Study , Retrospective Studies , Sensitivity and Specificity
13.
J Chem Phys ; 151(8): 084310, 2019 Aug 28.
Article En | MEDLINE | ID: mdl-31470731

Measurements of the total electron scattering cross sections (TCSs) from benzene, in the impact energy range of 1-1000 eV, are presented here by combining two different experimental systems. The first utilizes a magnetically confined electron transmission beam for the lower energies (1-300 eV), while the second utilizes a linear transmission beam apparatus for the higher energies (100-1000 eV). These cross sections have also been calculated by means of two different theoretical methods, the Schwinger Multichannel with Pseudo Potential (SMCPP) procedure, employing two different approaches to account for the polarization of the target for impact energies between 0.1 and 15 eV, and the Independent Atom Model with the Screening Corrected Additivity Rule including Interference effect (IAM-SCAR+I) paradigm to cover the 10-10 000 eV impact energy range. The present results are compared with available theoretical and experimental data, with the level of accord being good in some cases and less satisfactory in others, and some predicted resonances have been identified. In particular, we found a π* shape resonance at 1.4 eV and another feature in the energy region 4.6-4.9 eV interpreted as a π* resonance (2B2g symmetry), which is a mixture of shape and a core excited resonance, as well as a Feshbach resonance at 5.87 eV associated with the 3s (a1g) Rydberg state. A Born-type formula to extrapolate TCS values for energies above 10 000 eV is also given. This study provides a complete set of TCS data, with uncertainty limits within 10%, ready to be used for modeling electron transport applications.

14.
Math Biosci Eng ; 15(4): 993-1010, 2018 08 01.
Article En | MEDLINE | ID: mdl-30380318

We apply SE-optimal design methodology to investigate optimal data collection procedures as a first step in investigating information content in ecoinformatics data sets. To illustrate ideas we use a simple phenomenological citrus red mite population model for pest dynamics. First the optimal sampling distributions for a varying number of data points are determined. We then analyze these optimal distributions by comparing the standard errors of parameter estimates corresponding to each distribution. This allows us to investigate how many data are required to have confidence in model parameter estimates in order to employ dynamical modeling to infer population dynamics. Our results suggest that a field researcher should collect at least 12 data points at the optimal times. Data collected according to this procedure along with dynamical modeling will allow us to estimate population dynamics from presence/absence-based data sets through the development of a scaling relationship. These Likert-type data sets are commonly collected by agricultural pest management consultants and are increasingly being used in ecoinformatics studies. By applying mathematical modeling with the relationship scale from the new data, we can then explore important integrated pest management questions using past and future presence/absence data sets.


Pest Control/methods , Animals , Citrus/parasitology , Computer Simulation , Mathematical Concepts , Mites/pathogenicity , Models, Biological , Monte Carlo Method , Pest Control/statistics & numerical data , Plant Diseases/parasitology , Plant Diseases/prevention & control , Population Dynamics
15.
J Acoust Soc Am ; 144(2): 709, 2018 Aug.
Article En | MEDLINE | ID: mdl-30180715

This work proposes a power law model to describe the attenuation of ultrasonic waves in non-absorbing heterogeneous media with randomly distributed scatterers, mimicking a simplified structure of cortical bone. This paper models the propagation in heterogeneous structures with controlled porosity using a two-dimensional finite-difference time domain numerical simulation in order to measure the frequency dependent attenuation. The paper then fits a phenomenological model to the simulated frequency dependent attenuation by optimizing parameters under an ordinary least squares framework. Local sensitivity analysis is then performed on the resulting parameter estimates in order to determine to which estimates the model is most sensitive. This paper finds that the sensitivity of the model to various parameter estimates depends on the micro-architectural parameters, pore diameter (ϕ) and pore density (ρ). In order to get a sense for how confidently model parameters are able to be estimated, 95% confidence intervals for these estimates are calculated. In doing so, the ability to estimate model-sensitive parameters with a high degree of confidence is established. In the future, being able to accurately estimate model parameters from which micro-architectural ones could be inferred will allow pore density and diameter to be estimated via an inverse problem given real or simulated ultrasonic data to be determined.

16.
Phys Chem Chem Phys ; 20(34): 22368-22378, 2018 Aug 29.
Article En | MEDLINE | ID: mdl-30129642

Total electron scattering cross sections, from para-benzoquinone, for impact energies ranging between 1 to 200 eV, have been obtained by measuring the attenuation of a linear electron beam under magnetic confinement conditions. Random uncertainty limits on these values have been found to be within 5%. Systematic errors, due to the axial magnetic beam conditions in combination with the acceptance angle of the detector, have been evaluated by integrating our calculated independent atom model with the screening corrected additivity rule and interference term elastic differential cross sections over that detection acceptance angle. Our previous calculations and measurements on this molecule (Jones et al., J. Chem. Phys., 2018, 148, 124312 and J. Chem. Phys., 2018, 148, 204305), have been compiled and complemented with new elastic and inelastic scattering cross section calculations in order to obtain a comprehensive cross section data base, within the considered energy range, for modelling purposes. The self-consistency of the present data set has been evaluated by simulating the electron transport of 15 eV electrons in para-benzoquinone, and comparing those results with the observed transmitted intensity distribution.

17.
Prog Biophys Mol Biol ; 139: 15-22, 2018 11.
Article En | MEDLINE | ID: mdl-29902482

Quantitative systems pharmacology (QSP) models aim to describe mechanistically the pathophysiology of disease and predict the effects of therapies on that disease. For most drug development applications, it is important to predict not only the mean response to an intervention but also the distribution of responses, due to inter-patient variability. Given the necessary complexity of QSP models, and the sparsity of relevant human data, the parameters of QSP models are often not well determined. One approach to overcome these limitations is to develop alternative virtual patients (VPs) and virtual populations (Vpops), which allow for the exploration of parametric uncertainty and reproduce inter-patient variability in response to perturbation. Here we evaluated approaches to improve the efficiency of generating Vpops. We aimed to generate Vpops without sacrificing diversity of the VPs' pathophysiologies and phenotypes. To do this, we built upon a previously published approach (Allen et al., 2016) by (a) incorporating alternative optimization algorithms (genetic algorithm and Metropolis-Hastings) or alternatively (b) augmenting the optimized objective function. Each method improved the baseline algorithm by requiring significantly fewer plausible patients (precursors to VPs) to create a reasonable Vpop.


Models, Biological , Pharmacology/methods , Systems Biology/methods , User-Computer Interface , Algorithms , Uncertainty
18.
J Chem Phys ; 148(20): 204305, 2018 May 28.
Article En | MEDLINE | ID: mdl-29865824

We report absolute experimental integral cross sections (ICSs) for the electron impact excitation of 6 bands (Bands 0-V) of unresolved electronic-states in para-benzoquinone, for incident electron energies between 20 and 40 eV. Absolute vibrational-excitation ICSs, for 3 composite vibrational bands (Bands I-III), are also reported in that same energy range. In addition, ICSs calculated within our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section (TCS) for electron-para-benzoquinone scattering. Where possible, those calculated IAM-SCAR+I ICSs are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, we also present results from our Schwinger multichannel method with pseudopotential (SMCPP) calculations. Here elastic ICSs and ICSs corresponding to the Bands 0-III of unresolved electronic-states are presented, with agreement between the SMCPP electronic-state ICSs and those from our measurements being in good qualitative accord. The energy range of our SMCPP computations is 16-50 eV. Using the binary-encounter-Bethe (BEB) approach, total ionization cross sections for this collision system were computed. Those total ionization cross sections were then added to our SMCPP ICS results, to derive SMCPP/BEB TCSs that are typically in very good accord with those from our IAM-SCAR+I approach.

19.
J Chem Phys ; 148(14): 144308, 2018 Apr 14.
Article En | MEDLINE | ID: mdl-29655347

We present a range of cross section measurements for the low-energy scattering of positrons from pyridine, for incident positron energies of less than 20 eV, as well as the independent atom model with the screening corrected additivity rule including interference effects calculation, of positron scattering from pyridine, with dipole rotational excitations accounted for using the Born approximation. Comparisons are made between the experimental measurements and theoretical calculations. For the positronium formation cross section, we also compare with results from a recent empirical model. In general, quite good agreement is seen between the calculations and measurements although some discrepancies remain which may require further investigation. It is hoped that the present study will stimulate development of ab initio level theoretical methods to be applied to this important scattering system.

20.
J Chem Phys ; 148(12): 124312, 2018 Mar 28.
Article En | MEDLINE | ID: mdl-29604872

Angle resolved electron energy loss spectra (EELS) for para-benzoquinone (C6H4O2) have been recorded for incident electron energies of 20, 30, and 40 eV. Measured differential cross sections (DCSs) for electronic band features, composed of a combination of energetically unresolved electronic states, are subsequently derived from those EELS. Where possible, the obtained DCSs are compared with those calculated using the Schwinger multichannel method with pseudopotentials. These calculations were performed using a minimum orbital basis single configuration interaction framework at the static exchange plus polarisation level. Here, quite reasonable agreement between the experimental cross sections and the theoretical cross sections for the summation of unresolved states was observed.

...